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Abstract
Compressed Sensing seeks to capture a discrete signal x ∈ IRN with a small

number n of linear measurements. The information captured about x from such
measurements is given by the vector y = Φx ∈ IRn where Φ is an n × N matrix.
The best matrices, from the viewpoint of capturing sparse or compressible signals,
are generated by random processes, e.g. their entries are given by i.i.d. Bernoulli
or Gaussian random variables. The information y holds about x is extracted by a
decoder ∆ mapping IRn into IRN . Typical decoders are based on `1-minimization
and greedy pursuit. The present paper studies the performance of decoders based
on thresholding. For quite general random families of matrices Φ, decoders ∆
are constructed which are instance-optimal in probability by which we mean the
following. If x is any vector in IRN , then with high probability applying ∆ to y = Φx
gives a vector x̄ := ∆(y) such that ‖x−x̄‖ ≤ C0σk(x)`2 for all k ≤ an/ logN provided
a is sufficiently small (depending on the probability of failure). Here σk(x)`2 is the
error that results when x is approximated by the k sparse vector which equals x in
its k largest coordinates and is otherwise zero. It is also shown that results of this
type continue to hold even if the measurement vector y is corrupted by additive
noise: y = Φx+ e where e is some noise vector. In this case σk(x)`2 is replaced by
σk(x)`2 + ‖e‖`2 .

AMS Subject Classification: 94A12, 65C99, 68P30, 41A25, 15A52

Key Words: Compressed sensing, best k-term approximation, instance optimal de-
coders, thresholding, noisy measurements, random matrices.

1 Introduction

1.1 Background

The typical paradigm for acquiring a compressed representation of a discrete signal x ∈
IRN , N large, is to choose an appropriate basis, compute all of the coefficients of x in this
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basis, and then retain only the k largest of these with k < N . Without loss of generality,
we can assume that the appropriate basis is the canonical Kroenecker delta basis. If
Sk ⊂ {1, · · · , N} denotes a set of indices corresponding to k largest entries in x, then xSk
is the compressed approximation to x. Here and throughout this paper, for a set T of
indices, we denote by xT the vector which is identical to x on T but is zero outside T .

For any `p norm, this approximation process is equivalent to best k-term approxima-
tion. Namely, if

Σk := {z ∈ IRN : #(supp(z)) ≤ k}, (1.1)

where supp(z) is the number of nonzero entries in z, and if for any norm ‖ · ‖X on IRN ,
we define

σk(x)X := inf
z∈Σk
‖x− z‖X , (1.2)

then ‖x− xSk‖`p = ‖xSck‖`p = σk(x)`p . That is, xSk is a best approximation to x from Σk.
This approximation process should be considered as adaptive since the indices of those
coefficients which are retained vary from one signal to another.

Since, in the end, we retain only k entries of x in the above compression paradigm,
it seems wasteful to initially make N measurements. The theory of compressed sensing
as formulated by Candes, Romberg and Tao [8, 9] and by Donoho [14], asks whether it
is possible to actually make a number n of non-adaptive linear measurements, with n
comparable to k, and still retain the necessary information about x in order to build a
good compressed approximation. These measurements are represented by a vector

y = Φx, (1.3)

of dimension n < N where Φ is an n × N measurement matrix (called a CS matrix).
To extract the information that the measurement vector y holds about x, one uses a
decoder ∆ which is a mapping from IRn into IRN . The vector x∗ := ∆(y) = ∆(Φx) is our
approximation to x extracted from the information y. In contrast to Φ, the operator ∆
is allowed to be non-linear.

In recent years, considerable progress has been made in understanding the perfor-
mance of various choices of the measurement matrices Φ and decoders ∆. Although not
exclusively, by far most contributions focus on the ability of such an encoder-decoder pair
(Φ,∆) to recover a sparse signal. For example, a typical theorem says that there are pairs
(Φ,∆) such that whenever x ∈ Σk, with k ≤ an/ log(N/k), then x∗ = x.

From both a theoretical and a practical perspective, it is highly desirable to have pairs
(Φ,∆) that are robust in the sense that they are effective even when the vector x is not
assumed to be sparse. The question arises as to how we should measure the effectiveness
of such an encoder-decoder pair (Φ,∆) for non-sparse vectors. In [6] we have proposed to
measure such performance in a metric ‖ · ‖X by the largest value of k for which

‖x−∆(Φx)‖X ≤ C0σk(x)X , ∀x ∈ IRN , (1.4)

with C0 a constant independent of k, n,N . We say that a pair (Φ,∆) which satisfies
property (1.4) is instance-optimal of order k with constant C0. It was shown that this
measure of performance heavily depends on the norm employed to measure error. Let us
illustrate this by two contrasting results from [6]:
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(i) If ‖ · ‖X is the `1-norm, it is possible to build encoding-decoding pairs (Φ,∆)
which are instance-optimal of order k with a suitable constant C0 whenever n ≥
ck log(N/k) provided c and C0 are sufficiently large. Moreover the decoder ∆ can
be taken as

∆(y) := argmin
Φz=y

‖z‖`1 . (1.5)

Therefore, in order to obtain the accuracy of k-term approximation, the number
n of non-adaptive measurements need only exceed the amount k of adaptive mea-
surements by the small factor c log(N/k). We shall speak of the range of k which
satisfy k ≤ an/ log(N/k) as the large range since it is the largest range of k for
which instance-optimality can hold.

(ii) In the case ‖ · ‖X is the `2-norm, if (Φ,∆) is any encoding-decoding pair which
is instance-optimal of order k = 1 with a fixed constant C0, then the number of
measurement n is always larger than aN where a > 0 depends only on C0. Therefore,
the number of non-adaptive measurements has to be very large in order to compete
with even one single adaptive measurement.

The matrices Φ which have the largest range of instance-optimality for `1 are all given
by stochastic constructions. Namely, one creates an appropriate random family Φ(ω) of
n × N matrices on a probability space (Ω, ρ) and then shows that with high probability
on the draw, the resulting matrix Φ = Φ(ω) will satisfy instance-optimality for the large
range of k. There are no known deterministic constructions. The situation is even worse
in the sense that given an n × N matrix Φ there is no simple method for checking its
range of instance-optimality.

While the above results show that instance-optimality is not a viable concept in `2, it
turns out that the situation is not as bleak as it seems. For example, a more optimistic
result was established by Candes, Romberg and Tao in [9]. They show that if n ≥
ck log(N/k) it is possible to build pairs (Φ,∆) such that for all x ∈ IRN,

‖x−∆(Φx)‖`2 ≤ C0
σk(x)`1√

k
, (1.6)

with the decoder again defined by (1.5). This implies in particular that k-sparse signals
are exactly reconstructed and that signals x in the space weak `p (denoted by w`p) with
‖x‖w`p ≤M for some p < 1 are reconstructed with accuracy C0Mk−s with s = 1/p− 1/2.
This bound is of the same order as the best estimate available on max {σk(x)`2 : ‖x‖w`p ≤
M}. Of course, this result still falls short of instance-optimality in `2 as it must.

The starting point of the present paper is the intriguing fact, that instance-optimality
can be attained in `2 if one accepts a probabilistic statement. A first result in this
direction, obtained by Cormode and Mutukrishnan in [7], shows how to construct random
n×N matrices Φ(ω) and a decoder ∆ = ∆(ω), ω ∈ Ω, such that for any x ∈ IRN ,

‖x−∆(Φx)‖`2 ≤ C0σk(x)`2 (1.7)

holds with overwhelming probability (larger than 1− ε(n) where ε(n) tends rapidly to 0
as n → +∞) as long as k ≤ an/(logN)5/2 with a suitably small. Note that this result
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says that given x, the set of ω ∈ Ω for which (1.7) fails to hold has small measure. This
set of failure will depend on x.

From our viewpoint, instance-optimality in probability is the proper formulation in `2.
Indeed, even in the more favorable setting of `1, we can never put our hands on matrices
Φ which have the large range of instance-optimality. We only know with high probability
on the draw, in certain random constructions, that we can attain instance-optimality. So
the situation in `2 is not that much different from that in `1.

The results in [6] pertaining to instance-optimality in probability asked two funda-
mental questions: (i) can we attain instance-optimality for the largest range of k, i.e.
k ≤ an/ log(N/k), and (ii) what are the properties of random families that are needed
to attain this performance. We showed that instance-optimality can be obtained in the
probabilistic setting for the largest range of k, i.e. k ≤ an/ log(N/k) using quite general
constructions of random matrices. Namely, we introduced two properties for a random
matrix Φ which ensure instance-optimality in the above sense and then showed that these
two properties hold for rather general constructions of random matrices (such as Gaussian
and Bernoulli). However, one shortcoming of the results in [6] is that the decoder used in
establishing instance-optimality was defined by minimizing ‖y − Φx‖`2 over all k-sparse
vectors, a task which cannot be achieved in any reasonable computational time.

1.2 Objectives

In the present paper, we shall be interested in which practical decoders can be used with
a general random family so as to give a sensing system which has instance-optimality in
probability for `2 for the largest range of k. The first result in this direction was given by
Wojtasczcek [24] who has shown that `1-minimization can be used with Gaussian random
matrices to attain instance-optimality for this large range of k. This result was recently
generalized in [12] to arbitrary random families in which the entries of the matrix are
generated by independent draws of a sub-gaussian random variables. This result includes
Bernoulli matrices whose entries take the values ±1/

√
n.

The problem of decoding in compressed sensing, as well as for more general inverse
problems, is a very active area of research. In addition to `1-minimization and its efficient
implementation, several alternatives have been suggested as being possibly more efficient.
These include decoding based on greedy procedures such as Orthogonal Matching Pursuit
(OMP) (see [15, 20, 21, 22]) as well as decoding through weighted least squares [11]. Some
of the pertinent issues in analyzing a decoding method is the efficiency of the method
(number of computations) and the required storage needed.

Concerning efficiency, Gilbert and Tropp [15] have proposed to use a greedy procedure,
known as Orthogonal Matching Pursuit (OMP) algorithm, in order to define ∆(y). The
greedy algorithm identifies a set of Λ of column indices which can be used to decode y.
Taking zero as an initial guess, successive approximations to y are formed by orthogo-
nally projecting the measurement vector y onto the span of certain incrementally selected
columns φj of Φ. In each step, the current set of columns is expanded by one further
column that maximizes the modulus of the inner product with the current residual. The
following striking result was proved in [15] for a probabilistic setting for general random
matrices which include the Bernouli and Gaussian families: if n ≥ ck logN with c suffi-
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ciently large, then for any k sparse vector x, the OMP algorithm returns exactly xk = x
after k iterations, with probability greater than 1−N−b where b can be made arbitrarily
large by taking c large enough.

Decoders like OMP are of high interest because of their efficiency. The above result of
Gilbert and Tropp remains as the only general statement about OMP in the probabilistic
setting. A significant breakthrough on decoding using greedy pursuit was given in the
paper of Needel and Vershynin [20] (see also their followup [21]) where they showed
the advantage of adjoining a batch of coordinates at each iteration rather than just one
coordinate as in OMP. They show that such algorithms can deterministically capture
sparse vectors for a slightly smaller range than the large range of k.

The present paper examines decoders based on thresholding and asks whether such
algorithms can be used as decoders to yield `2 instance-optimality in probability for general
families of random matrices. We will describe in Section 6 a greedy thresholding scheme,
referred to as SThresh, and prove that it gives instance-optimality in probability in `2

for the large range of k. This algorithm adds a batch of coordinates at each iteration
and then uses a thinning procedure to possibly remove some of them at later iterations.
Conceptually, one thinks in terms of a bucket holding all of the coordinates to be used
in the construction of x. In the analysis of such algorithms it is important to not allow
more than a multiple of k coordinates to gather in the bucket. The thinning is used for
this purpose.

While preparing this paper, we became aware of the work of Needel and Tropp [22]
in which they develop a deterministic algorithm (called COSAMP) which has features
similar to ours. In fact, we have employed some of the ideas of that paper in our analysis.
This will be discussed in more detail after we give a precise description of our algorithm.

While the benchmark of instance-optimality covers the case of an input signal x which
is a perturbation of a sparse signal, it is not quite appropriate for dealing with possible
noise in the measurements. By this we mean that instead of measuring Φx, our measure-
ment vector y is of the form

y = Φx+ e, (1.8)

with e ∈ IRn a noise vector. SThresh will also perform well in this noisy setting. Stability
under noisy measurements has been also established for COSAMP ([22]) as well as for
schemes based on `1-regularization [9]. While this latter strategy requires a-priori knowl-
edge about the noise level, this is not the case for COSAMP and the schemes developed
in this paper.

A brief overview of our paper is the following. In the next section, we introduce the
probabilistic properties we will require of our random families. In §3, we introduce a de-
terministic algorithm based on thresholding and analyze its performance. This algorithm
is then used as a basic step in the greedy decoding algorithm for stochastic families in the
following section §4. In this section, we prove that the stochastic decoding algorithm gives
instance optimality in probability. As we have noted above, a key step in this decoding is
a thinning of the indices placed into the bucket. It is an intriguing question whether this
thinning is actually necessary. This leads us to consider an algorithm without thinning.
We introduce such an algorithm in §6 and we show in §7 that almost gives instance-
optimality in probability for `2 for the large range of k. The results for that algorithm
are weaker than the thinning algorithms in two ways. First they require the addition of
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a small term ε to σk(x)`2 and secondly the range of k is slightly smaller than the large
range. Finally, we append in §8 the proof that random matrices such as Gaussian and
Bernoulli as well as uniform vectors on the unit sphere satisfy the properties which are
used in the analysis of both algorithms.

While a lot of progress has been made on understanding the performance of greedy
algorithms for decoding in compressed sensing, there remain fundamental unsettled ques-
tions. The most prominent is whether the original OMP algorithm can indeed give in-
stance optimality in probability for `2 for the large range of k.

2 The Setting

As we have already mentioned, one of our goals is to derive results that hold for general
random families. In this section, we state general properties of random families which
will be used as assumptions in our theorems.

We consider random n × N matrices Φ = Φ(ω), on a probability space (Ω, ρ). We
denote the entries in Φ by φi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ N and denote the j-th column of Φ by
φj, j = 1, . . . , N . One of the main properties needed of random families for compressed
sensing is that given any x ∈ IRN, with high probability Φx has norm comparable to that
of x. We formulate this in

P1: For any x ∈ IRN and δ > 0, there is a set Ω1(x, δ) ⊂ Ω such that

|‖Φx‖2
`2
− ‖x‖2

`2
| ≤ δ‖x‖2

`2
, ω ∈ Ω1(x, δ), (2.1)

and
ρ(Ωc

1(x, δ)) ≤ b1e
−c1nδ2 , (2.2)

where b1 and c1 are absolute constants.
An important consequence of property P1, often used in compressed sensing, is the

following Restricted Isometry Property (RIP), as formulated by Candes and Tao [8]:

RIP(k, η): An n × N matrix Φ0 is said to satisfy the Restricted Isometry Property of
order m with constant η ∈ (0, 1), if

(1− η)‖x‖2 ≤ ‖Φ0x‖2 ≤ (1 + η)‖x‖2, x ∈ Σm (2.3)

It was shown in [3] that P1 implies RIP. More precisely, their analysis gives the
following fact (which will also be proved in the Appendix §8).

Proposition 2.1 Whenever the random family Φ = Φ(ω), ω ∈ Ω, of n × N matrices
satisfies P1, then for each η ∈ (0, 1) there exists a subset Ω0(m, η,Φ) ⊂ Ω with

ρ(Ω0(m, η)c) ≤ b1e
− c1nη

2

4
+m[ log(eN/m)+log(12/η)] (2.4)

where b1, c1 are the constants from P1, such that for each draw ω ∈ Ω0(m, η) the matrix
Φ satisfies RIP(m, η) (order m with constant η). In particular, given η, if a is chosen
suitably small (depending on η) then with high probability Φ will satisfy RIP(m, η) as
long as m ≤ an/ log(N/m), i.e for the large range of m.
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Later we shall have to apply RIP to different groups of random matrivces Φj. Includ-
ing Φ as a parameter in sets of type Ω0 will indicate which group of matrices we refer to
when invoking RIP.

3 A deterministic thresholding algorithm

In this section, we shall introduce a deterministic thresholding algorithm. Later, we
shall embed this algorithm into the probabilistic setting and show that the corresponding
probabilistic algorithm has `2 instance optimality in probability.

We continue to denote by k the envisaged range of instance optimality. We shall
assume throughout this section that Φ is an n×N compressed sensing matrix that satisfies
the RIP(m, η) where m ≥ 3k is an integer which will be specified later. For the validity
of the theorems that follow, there will also be a restriction that η is sufficiently close to 0.

3.1 Description of the thresholding algorithm and main result

In this section, we shall describe our thresholding algorithm. The algorithm starts with
an input vector y ∈ IRn and generates a set Λ of at most k indices. The input vector
y is either y = Φx in the noiseless case or y = Φx + e in the presence of noise e in the
measurements. The output of the algorithm is a vector x∗ which is an approximation to
x determined by the noisy information y.

We now describe our thresholding algorithm for decoding an input vector v ∈ IRn of
either type:

DThresh[v, k, δ]→ x∗

(i) Fix a thresholding parameter δ > 0. Choose the sparsity index k, let r0 := v,
x0 := 0, and set j = 0, Λ0 = Λ̄0 = ∅.

(ii) If j = k stop and set x∗ := xj.

(iii) Given Λj calculate the residual rj := v − Φxj for the input vector v and define

Λ̃j+1 := {i ∈ {1, . . . , N} : |〈rj, φi〉| ≥
δ‖rj‖√

k
}

If Λ̃j+1 = ∅, stop and output Λ∗ = Λj and x∗ := xj.
Otherwise set Λ̄j+1 := Λj ∪ Λ̃j+1.

(iv) Compute x̂(Λ̄j+1) (according to (5.13)) as

x̂(Λ̄j+1) = argminsupp(z)⊆Λ̄j+1
‖Φz − v‖,

and define Λj+1 as the set indices ν ∈ Λ̄j+1 corresponding to the k largest (in
absolute value) entries in x̂(Λ̄j+1). Let xj+1 := x̂(Λ̄j+1)Λj+1

, j + 1 → j and return
to (ii).
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Step (iii) is a thinning step which prevents the bucket of indices to get too large so
that in our analysis RIP(η,m) will turn out to remain applicable for a fixed suitable
multiple m of k.

Perhaps a few remarks concerning a comparison with COSAMP are in order. In both
schemes any a priori knowledge about the noise level is not needed but the envisaged spar-
sity range k appears as a parameter in the scheme. This is in contrast to `1-regularization
in [9] which, however, does seem to require a priori knowledge about the noise level. Of
course, one can take k as the largest value for which the scheme can be shown to perform
well. The subsequent analysis will show that this is indeed the case for the maximal range.

While DThresh as well as COSAMP are based on thresholding, COSAMP from the
very beginning always works with least squares projections of size 2k. In the above scheme
the sets of active indices Λj are allowed to grow and, in fact, the scheme may terminate
before they ever reach size k.

The following theorem summarizes the convergence properties of DThresh.

Theorem 3.1 Assume that δ, η ≤ 1/32 and that the matrix Φ satisfies RIP(m, η) with
m ≥ dk(1+ 3

2δ2
)e. Then for any x ∈ IRN and y = Φx+e the output x∗ of DThresh[y, k, δ]

has the following properties:

(i) If in addition x ∈ Σk, then the output x∗ satisfies

‖x− x∗‖ ≤ 90‖e‖. (3.1)

(ii) If x ∈ IRN and xSk is its best approximation from Σk, i.e. the indices in Sk identify
the k largest terms (in absolute value) in x, then

‖x− x∗‖ ≤ 90[‖Φ(x− xSk)‖+ ‖e‖]. (3.2)

(iii) For arbitrary x ∈ IRN , one has

‖x− x∗‖ ≤ 90
(

(1 + η)1/2
(σk(x)`N1√

k
+ σk(x)`N2

)
+ ‖e‖

)
. (3.3)

We postpone the proof of Theorem 3.1 to Section 5 and explain first its ramifications
in the stochastic setting.

4 Thresholding in the stochastic setting

Let us now assume that Φ(ω), ω ∈ Ω, is a random family of matrices which satisfy P1.
As we have shown in Proposition 2.1, with high probability on the draw (see (2.4)), Φ(ω)
will satisfy RIP(m, η), m a fixed multiple of k, for the large range of k, with constant
a depending on that multiple and on η. We shall use the following stochastic version
SThresh of the thresholding algorithm which differs from DThresh only in the initial-
ization step (i).

SThresh[v, k, δ]→ x∗

8



(i) Fix a thresholding parameter δ > 0 and the sparsity index k. Given any signal
x ∈ IRN take a random draw Φ = Φ(ω) and consider as input the measurement
vector v = Φx + e ∈ IRn where e is a noise vector. Let r0 := v, and set j = 0,
Λ0 = Λ̄0 = ∅.

(ii) If j = k stop and set x∗ := xj.

(iii) Given Λj calculate the residual rj := v − Φxj for the input vector v and define

Λ̃j+1 := {i ∈ {1, . . . , N} : |〈rj, φi〉| ≥
δ‖rj‖√

k
}

If Λ̃j+1 = ∅, stop and output Λ∗ = Λj and x∗ := xj.
Otherwise set Λ̄j+1 := Λj ∪ Λ̃j+1.

(iv) Compute x̂(Λ̄j+1) (according to (5.13)) as

x̂(Λ̄j+1) = argminsupp(z)⊆Λ̄j+1
‖Φz − v‖,

and define Λj+1 as the set indices ν ∈ Λ̄j+1 corresponding to the k largest (in
absolute value) entries in x̂(Λ̄j+1). Let xj+1 := x̂(Λ̄j+1)Λj+1

, j + 1 → j and return
to (ii).

Notice that the output x∗ = x∗(ω) is stochastic. From the analysis of the previous
section, we can deduce the following theorem.

Theorem 4.1 Assume that δ ≤ 1/63 in SThresh and that the stochastic matrices Φ(ω)
have property P1. Then, for any x ∈ IRN there exists a subset Ω(x) of Ω with

ρ(Ω(x)c) ≤ 2b1e
−c1n/8·632

, (4.1)

such that for any ω ∈ Ω(x) and measurements of the form y = Φ(ω)x + e, with e ∈ IRn

a noise vector, the output x∗ of SThresh[y, δ, k] satisfies

‖x− x∗‖ ≤ Cσk(x) + 90‖e‖, k ≤ an/ log(N/n), (4.2)

with C ≤ 92 and a depending only on δ, c1 and the bound on η.
In particular, when e = 0 this algorithm is instance-optimal in probability in `2 for the

large range of k.

Proof: Fixing η = 1/63 and m = d(1 + 3
2δ2

)ke we know by Proposition 2.1 that there
exists a set Ω0 ⊂ Ω such that for ω ∈ Ω0 the matrix Φ = Φ(ω) satisfies RIP(m, 1/63) and

ρ(Ωc
0) ≤ b1e

− c1n

4·632
+m[ log 756+log(eN/m)]. (4.3)

Thus, as long as N ≥ 756m/e it suffices to have 2m log(eN/m) ≤ c1n/8 · 632, to ensure
that

ρ(Ωc
0) ≤ b1e

− c1n

8·632 , whenever k ≤ an/ log(N/k) (4.4)
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provided a is sufficiently large. Thus, we infer from Theorem 3.1 (ii) that

‖x− x∗‖ ≤ 90(‖Φ(x− xSk)‖+ ‖e‖) (4.5)

holds for every ω ∈ Ω0. Now, by Property P1, there exists a subset Ω1(xcSk , 1/63) with
complement

ρ(Ω1(xcSk , 1/63)c) ≤ b1e
−c1n/632

,

such that ‖Φ(x−xSk)‖ ≤ 1.013‖x−xSk‖ which ensures the validity of (4.2) with Ω(x) :=
Ω0 ∩ Ω1(xcSk , 1/63). 2

5 Proof of Theorem 3.1

We begin by collecting a few prerequisites.

5.1 Consequences of RIP

Let us first record some simple results that follow from the RIP(m, η) assumption. Most
of the results we state in this subsection can be found in [20] but we include their simple
proofs for completeness of the present paper.

Lemma 5.1 For any I ⊂ {1, . . . , N} with #(I) ≤ m we have

‖Φ∗I‖2 = ‖ΦI‖2 ≤ (1 + η). (5.1)

Proof: The equality in (5.1) holds because the norm of a matrix and its conjugate trans-
pose are identical (this follows for example from the fact that ‖A‖ = sup‖x‖=1,‖y‖=1 y

tAx).

The upper inequality follows from the RIP(m, η) assumption because for any x ∈ IRN ,
supported in I one has ‖ΦIx‖ = ‖ΦxI‖ ≤ (1 + η)1/2‖xI‖ = (1 + η)1/2‖x‖. 2

Lemma 5.2 For any I with #(I) ≤ m we have

(1− η) ≤ ‖Φ∗IΦIx‖ ≤ (1 + η), ‖xI‖ = 1. (5.2)

and therefore
‖Φ∗IΦI − IdI‖ ≤ η, (5.3)

where IdI denotes the identity matrix of size #(I).

Proof: The upper inequality in (5.2) follows from Lemma 5.1 and the lower inequality
follows from RIP(m, η) since

‖xI‖ · ‖Φ∗IΦIxI‖ ≥ x∗IΦ
∗
IΦIxI = ‖ΦIxI‖2 ≥ (1− η).

Hence all eigenvalues of Φ∗IΦI belong to (1 − η, 1 + η). Thus the symmetric matrix
Φ∗IΦI − IdI has its eigenvalues in (−η, η) which confirms (5.3). 2
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Lemma 5.3 For any I with #(I) ≤ m and any x with supp(x) ⊆ I, we have

(1− η)√
1 + η

‖ΦIx‖ ≤ (1− η)‖x‖ ≤ ‖Φ∗IΦIx‖ ≤
√

1 + η‖ΦIx‖. (5.4)

Proof: The upper inequality in (5.4) follows from Lemma 5.1. The two lower inequalities,
follow from (2.3) and (5.2), respectively. 2

Lemma 5.4 Suppose that T and J are sets of indices such that #(J ∪ T ) ≤ m and
J ∩ T = ∅. If supp(x) = T one has

‖Φ∗JΦx‖ ≤ η‖x‖. (5.5)

Proof: Let I := J ∪T . We extend the matrices Φ∗J ,Φ
∗
T to size #(I)×n by adjoining rows

that are identically zero when the indices are in I \ J and I \ T respectively. Similarly
extend ΦT so that it has columns indexed on I. Then, since x is supported on T ⊂ I, we
have

Φ∗JΦx = [Φ∗IΦI − Φ∗TΦT ]x = [Φ∗IΦI − IdI − (Φ∗TΦT − IdI)]x. (5.6)

Since the vectors [Φ∗IΦI − IdI ]x and [Φ∗TΦT − IdI)]x agree in all coordinates for which the
latter vector is nonzero, we can take norms in (5.6), use Lemma 5.2 and obtain

‖Φ∗JΦx‖ ≤ ‖[Φ∗IΦI − IdI ]x‖ ≤ η‖x‖, (5.7)

as desired. 2

As a summary of these results, under the assumption RIP(m, η), we have for any two
disjoint sets Λ,Λ′ ⊂ {1, . . . , N} such that #(Λ∪Λ′) ≤ m, and for any vectors u ∈ IR#(Λ),
v ∈ IRn, we have

‖ΦΛ′ΦΛu‖ ≤ η‖u‖. (5.8)

Moreover, for any Λ ⊂ {1, . . . , N}, #Λ ≤ m, one has

‖Φ∗Λv‖ ≤ (1 + η)1/2‖v‖ (5.9)

‖Φ∗ΛΦΛu‖
≤
≥ (1± η)‖u‖ (5.10)

‖(Φ∗ΛΦΛ)−1u‖
≥
≤ (1± η)−1‖u‖. (5.11)

We conclude this section with some remarks on solving least squares problems. Sup-
pose that Φ satisfies RIP(m, η) for some η < 1. Given any set Λ ⊂ {1, . . . , N} with
cardinality ≤ m and any input vector v ∈ IRn, the least squares problem

û(Λ) := argmin
supp(z)⊆Λ

‖v − Φz‖ (5.12)

has a unique solution given by the Moore-Penrose pseudo inverse

û(Λ) = [Φ∗ΛΦΛ]−1Φ∗Λv. (5.13)

By (5.10) the solution can be computed in a stable way.
Notice that ΦΛû(Λ) = PΛv where PΛ is the projector onto the span of the columns φν ,

ν ∈ Λ.
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5.2 Analysis of DThresh

In this section, we shall analyze the performance of the thresholding algorithm in the
deterministic setting and prove that the output x∗ is a good approximation to x. We
fix the threshold δ > 0 and assume that Φ satisfies the RIP(m, η) for some integer
m > (1 + 3

2δ2
)k and some constant η < 1. We shall see that, if η and δ are chosen

sufficiently small, the scheme DThresh will have good convergence properties.
For our first lemma, we analyze thresholding when the input vector is v = Φu+e with

u ∈ Σ2k. Let T denote the support of u so that by assumption #(T ) ≤ 2k and let Λ(v, k)
denote the set of coordinates ν with

|〈v, φν〉| ≥
δ‖u‖√
k
. (5.14)

Lemma 5.5 The set Λ(v, k) contains at most 3k
2δ2

coordinates.

Proof: Suppose Λ(v, k) contains a set I of ≤ m coordinates. Then from the definition of
Λ(v, k) and (5.9), we have

#(I)δ2‖v‖2

k
≤ ‖Φ∗Iv‖2 ≤ (1 + η)‖v‖2 ≤ 3/2‖v‖2. (5.15)

It follows that #(I) ≤ 3k
2δ2

which proves the lemma. 2

The following lemma will be key to our error analysis.

Lemma 5.6 Assume that v = y = Φx + e with x ∈ Σk and that the threshold δ in
DThresh[y, δ, k] satisfies δ ≤ 1/63. Moreover, assume that Φ satisfies RIP(m, η) for a
fixed η ≤ 1/63 and m > (1 + 3/δ2)k. Then for the iterates xj, j = 0, 1, . . . , produced by
DThresh[y, δ, k] one has

‖x− xj+1‖ ≤ 18

61
‖x− xj‖+

144

61
‖e‖, (5.16)

and

‖x− xΛj+1
‖ ≤ 3

5
‖x− xΛj‖+ 4‖e‖, (5.17)

Proof: Let S be the support of x. We fix j and use the abbreviated notation Λ̄ := Λ̄j+1

and x̂ := x̂(Λ̄). Let T := S ∪ Λ̄ which contains the support of x− x̂. We have

‖x− x̂‖ ≤ (1− η)−1‖Φ∗TΦT (x− x̂)‖
≤ (1− η)−1{‖Φ∗T [ΦT (x− x̂) + e]‖+ ‖Φ∗T e‖}
≤ (1− η)−1{‖Φ∗S\Λ̄[ΦT (x− x̂) + e]‖+ (1 + η)1/2‖e‖} (5.18)

where the first inequality uses (5.10) (which is applicable since the cardinality of T is ≤ m
because of Lemma 5.5), and the third inequality uses (5.1) and the fact that the inner
product of

[ΦT (x− x̂) + e] = y − ΦΛ̄x̂ = y − PΛ̄y
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with any column of Φ with index inside Λ̄ is zero.
We estimate the first term in (5.18) as follows

‖Φ∗S\Λ̄[ΦT (x− x̂) + e]‖ = ‖Φ∗S\Λ̄(y − ΦΛ̄x̂)‖
≤ ‖Φ∗S\Λ̄[y − Φxj]‖+ ‖‖Φ∗S\Λ̄Φ(xj − x̂)‖
= ‖Φ∗S\Λ̄[rj]‖+ ‖Φ∗S\Λ̄[Φxj − Φx̂]‖. (5.19)

To estimate the first term on the right side of (5.19), we use the fact that each inner
product of φν , ν ∈ S\Λ̄, with rj is ≤ δ/

√
k because of the definition of Λ̄. Since #(S) ≤ k,

using (5.1), we obtain

‖Φ∗S\Λ̄[rj]‖ ≤
√
δ‖rj‖ =

√
δ‖Φ(x− x̂Λj) + e‖ ≤

√
δ(1 + η)1/2‖x− xj‖+

√
δ‖e‖. (5.20)

For the second term on the right side of (5.19), we note that Λ̄ is disjoint from S \ Λ̄
and that Λj = suppxj ⊆ Λ̄, so we can invoke (5.8) and obtain

‖Φ∗S\Λ̄[Φxj − Φx̂] ≤ η‖xj − x̂‖ ≤ η[‖x− xj‖+ ‖x− x̂‖]. (5.21)

If we use now the estimate (5.20) and (5.21) in (5.19), we obtain

‖Φ∗S\Λ̄[ΦT (x− x̂) + e]‖ ≤
√
δ(1 + η)1/2‖x− xj‖+

√
δ‖e‖+ η[‖x− xj‖+ ‖x− x̂‖] (5.22)

We now insert the latter estimate in (5.18) and obtain

‖x− x̂‖ ≤ (1−η)−1(η‖x− x̂‖+ ((1 +η)1/2
√
δ+η)‖x−xj‖+ [

√
δ+ (1 +η)1/2]‖e‖). (5.23)

We now bring the term involving ‖x− x̂‖ on the right to the left side and obtain

‖x− x̂‖ ≤ (1 + η)1/2
√
δ + η

(1− 2η)
‖x− xj‖+

√
δ + (1 + η)1/2

(1− 2η)
‖e‖. (5.24)

Recalling that x̂ = x̂(Λ̄j+1) and that xj+1 = x̂(Λ̄j+1)Λj+1
is its best k-term approximation,

we find

‖x− xj+1‖ ≤ ‖x− x̂(Λ̄j+1)‖+ ‖x̂(Λ̄j+1)− x̂(Λ̄j+1)Λj+1
‖ ≤ 2‖x− x̂(Λ̄j+1)‖, (5.25)

since the support of x has also size at most k. Thus we deduce from (5.24) and (5.25)
that

‖x− xj+1‖ ≤ 2((1 + η)1/2
√
δ + η)

(1− 2η)
‖x− xj‖+

2(
√
δ + (1 + η)1/2)

(1− 2η)
‖e‖. (5.26)

When we invoke our restrictions that both δ and η are ≤ 1/63, we arrive at (5.16).
To derive (5.17), we note that from (5.16) we obtain

‖x− xΛj+1
‖ ≤ ‖x− xj+1‖ ≤ 18

61
‖x− xj‖+

144

61
‖e‖. (5.27)
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Since by Lemma 5.5 #(S ∪ Λ̄j) ≤ k+ 3
2δ2
≤ m, we can apply RIP(m, η) to conclude that

‖x− x̂(Λ̄j)‖ ≤ (1− η)−1/2‖Φ(x− x̂(Λ̄j))‖ ≤ (1− η)−1/2[‖Φ(x− x̂(Λ̄j)) + e‖+ ‖e‖]
= (1− η)−1/2(‖y − PΛ̄jy‖+ ‖e‖)
≤ (1− η)−1/2[‖y − ΦxΛj‖+ ‖e‖] ≤ (1− η)−1/2[‖Φ(x− xΛj)‖+ 2‖e‖]
≤ (1− η)−1/2[(1 + η)1/2‖x− xΛj‖+ 2‖e‖]. (5.28)

Since xj is the best k-term approximation of x̂(Λ̄j) we can use (5.25) again, to conclude
that

‖x− xj‖ ≤ 2
(1 + η

1− η

)1/2

‖x− xΛj‖+ 4(1− η)−1/2‖e‖. (5.29)

Placing this in (5.27) and using the restriction η ≤ 1/63 gives

‖x− xΛj+1
‖ ≤ 3

5
‖x− xΛj‖+

217

61
‖e‖,

and hence (5.17). 2

We can derive from this lemma several results about the convergence of DThresh.
For this, we shall use the following lemma.

Lemma 5.7 Suppose that x ∈ IRN and α ≤ 1/
√

2. Let Λ0 = ∅ and suppose Λj ⊂
{1, . . . , N}, j = 1, 2, . . . , j0, are sets such that

‖x− xΛj+1
‖ ≤ α‖x− xΛj‖, j = 0, . . . , j0 − 1. (5.30)

Then,
‖x− xΛj‖ ≤ σj(x), j = 0, . . . , j0. (5.31)

Proof: We prove this by induction on j. This is obviously true for j = 0 and we now
assume this is true for any j < j0 and advance the induction hypothesis. Without loss of
generality we can assume that |x1| ≥ |x2| ≥ . . . |xN |. If σj+1(x) ≥ ασj(x), then

‖x− xΛj+1
‖ ≤ α‖x− xΛj‖ ≤ ασj(x) ≤ σj+1(x). (5.32)

On the other hand, if σj+1(x) < ασj(x), then σj(x)2 − |xj+1|2 < α2σj(x)2 or, in other
words |xj+1|2 > (1− α2)σj(x)2. Now, by our induction assumption,∑

ν /∈Λj+1

x2
ν ≤ α2σj(x)2 ≤ (1− α2)σj(x)2, (5.33)

because α2 ≤ 1/2. It follows that Λj+1 must contain every i ≤ j+ 1 and so we again have
(5.31). 2

We are now ready to complete the proof of Theorem 3.1,
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Proof of (i): We want to show that ‖x − x∗‖ ≤ A‖e‖ with A ≤ 280. Let j0 be the
terminating index of the algorithm. Suppose for some j1 ≤ j0 we have ‖x− xj1‖ ≤ A‖e‖,
for some A. From (5.16) we have by induction for any j1 ≤ j < j0 that

‖x− xj+1‖ ≤ 18

61
‖x− xj‖+

144

61
‖e‖ ≤ A‖e‖ (5.34)

whenever A ≥ 162
61

, as desired.
For the next case, we assume that the algorithm terminates for some j < k, so that

Λ̃j = ∅ and hence Λj = Λj−1 and x∗ = xj = xj−1. In this case, (5.16) gives that

‖x− x∗‖ = ‖x− xj‖ ≤ 18

61
‖x− xj−1‖+

144

61
‖e‖ =

18

61
‖x− xj‖+

144

61
‖e‖. (5.35)

Thus, ‖x− x∗‖ ≤ A‖e‖, as long as A ≥ 144
43

, and we have proved this case as well.
The last possibility is that ‖x− xj‖ ≥ A‖e‖ for all 0 ≤ j ≤ k. From (5.29), it follows

that

‖x− xΛj‖ ≥
1

2

(1− η
1 + η

)1/2(
‖x− xj‖ − 4

(1− η)1/2
‖e‖
)
, (5.36)

which, under the assumption that ‖x− xj‖≥A‖e‖, yields

‖e‖ ≤ 2(1 + η)1/2

(1− η)1/2A− 4
‖x− xΛj‖. (5.37)

This together with (5.17) yields

‖x− xΛj+1
‖ ≤

(
.6 +

8(1 + η)1/2

(1− η)1/2A− 4

)
‖x− xΛj‖, 0 ≤ j ≤ k. (5.38)

One can check that as long as A ≥ 90 the expression in parentheses on the right hand
side of (5.38) is less than 0.7 ≤ 1/

√
2. We are then allowed to employ Lemma 5.7 to find

‖x− xΛk‖ ≤ σk(x) = 0. (5.39)

Using this in (5.29) gives ‖x−x∗‖ = ‖x−xk‖ ≤ 4(1− η)−1/2‖e‖ < A‖e‖ which concludes
the proof of (i).

Proof of (ii): For an arbitrary signal x ∈ IRN , we let S be the set of k indices corre-
sponding to the k largest entries (in absolute value) of x and set

y = Φx+ e = ΦxS + ΦxSc + e =: ΦxS + ẽ

with ẽ := e+ ΦxSc . Applying (i), we have

‖x− x∗‖ ≤ 90‖ẽ‖ ≤ 90(‖ΦxSc‖+ ‖e‖) (5.40)

which proves (ii).
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Proof of (iii): Again, let S be a set of coordinates corresponding to the k largest entries
in x. From RIP(m, η) one deduces that

‖ΦxSc‖ ≤ (1 + η)1/2
(σk(x)`1√

k
+ σk(x)`2

)
. (5.41)

For the proof of this see either [9] or [6]. For convenience of the reader we sketch it here.
Let T0 := S and Ti+1 denote the set of indices corresponding to the next k largest (in
absolute value) entries of x(T0∪···∪Ti)c so that ‖xTi+1

‖ ≤ k−1/2‖xTi‖`1 . The last set Ts may
have fewer entries. Employing RIP yields then

‖ΦxSc‖ ≤
s∑
i=1

‖ΦxTi‖ ≤ (1 + η)1/2

s∑
i=1

‖xTi‖

≤ (1 + η)1/2
(
σk(x)`2 +

s−1∑
i=1

k−1/2‖xTi‖`1
)
≤ (1 + η)1/2

(
σk(x)`2 +

σk(x)`1√
k

)
.

If we use this in (3.2) we arrive at (3.3). 2

6 A thresholding algorithm without thinning

The scheme SThresh invokes a thinning step at each iteration. It is not clear whether
this is necessary for the successful performance of this algorithm. This prompts us to
consider what can be proved without such thinning. In this section, we shall introduce and
analyze a greedy algorithm based only on thresholding for the decoding of the information
y = Φx + e. We shall see that we obtain instance optimality in probability except for a
small additive factor that can be made as small as we wish (as n,N →∞).

To this end, we shall need an additional property of the family of random matrices
that can be formulated as follows:

P2: For any z ∈ IRn, l ∈ {1, . . . , N}, and δ > 0, there is a set Ω2(z, δ, l) such that

|〈z, φl〉| ≤ δ‖z‖`2 , ω ∈ Ω2(z, δ, l) (6.1)

and
ρ(Ωc

2(z, δ, l)) ≤ b2e
−c2nδ2 , (6.2)

where b2 and c2 are absolute constants.

Throughout this section we shall assume that for each n,N , the n×N matrices Φ(ω)
satisfy P1, P2 and that the entries in Φ are independent identically distributed draws
of a single random variable. In particular, the results of this section cover the random
Bernouli and Gaussian matrices.

We shall assume throughout this section that the number of measurements factors
as n = am where both a and m are integers. We define Φ1 to be the submatrix of Φ
consisting of its first m rows, Φ2 the submatrix of Φ consisting of the next m rows and
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so on up to Φa. Each of these matrices is a randomly drawn m × N matrix. We will
generally denote such a generic m×N randomly drawn matrix as Φ0.

We now describe a thresholding algorithm for decoding y = Φ(x). Given a set Λ ⊂
{1, 2, . . . , N} of column indices, we denote by PΛ(y) the projection of y onto span{φj}j∈Λ.
We also denote by X(Λ) the linear space of all x ∈ IRN which are supported on Λ. The
algorithm will find a set of column indices Λ = Λ(y) which will be used to decode y as
follows: Writing PΛ(y) =

∑
i∈Λ x

Λ
i φi, and denoting by x̄ ∈ IRN the vector defined by

x̄i := xΛ
i , i ∈ Λ, x̄i = 0, i 6∈ Λ, we set

∆(y) = x̄. (6.3)

To find the set Λ used in the definition (6.3), we start with Λ̄0 = Λ0 := ∅. At the j-th
step of the algorithm, the algorithm will find a set Λj of new coordinates. This is added
to the existing “activated” coordinates to give Λ̄j := ∪ji=0Λi = ∪ji=1Λi as the current set
of coordinates in our approximation to x. We do not want to ever have more than 2k
coordinates in our final set Λ(y). So we stop the algorithm as soon as #Λ̄j > 2k. In
fact, we trim the last set of coordinates found in order to be sure the final set Λ(y) has
cardinality ≤ 2k.

Given i ∈ {1, . . . , a}, we denote by y[i] and e[i] the portion of y, e, respectively, obtained
by setting to zero all coordinates of y, e whose indices are not in {(i− 1)m + 1, . . . , im}
while keeping the remaining coordinates intact. Suppose δ ∈ (0, 1) is a given threshold
tolerance. At present, we put no restrictions on δ but later the validity of our theorems
will require δ to be sufficiently small but fixed.

At the first step, we define r1 := y[1] = Φ1(x) + e[1], compute ‖y[1]‖ and consider all
coordinates ν for which

|〈r1, φ1
ν〉| ≥ δk−1/2‖r1‖. (6.4)

Assume for the moment that there are at most 2k coordinates ν satisfying (6.4). Then
we take Λ̄1 := Λ1 as the set of first activated coordinates and define X(Λ̄1) and compute

x1 := argmin
z∈X(Λ̄1)

‖Φ1z − y[1]‖ = ‖y[1] − PΛ̄1
y[1]‖. (6.5)

The vector x1 is the solution to a least squares problem and has a simple closed form
representation. The Gramian matrix which needs to be inverted to compute x1 is nonsin-
gular with high probability because of the RIP property given below. Finally, we define
r2 := y[2] − Φ2x

1.
If there are more than 2k coordinates satisfying (6.4) we define Λ̄1 := Λ1 as the set of 2k

coordinates which have the largest inner product in (6.4) (with ties handled arbitrarily).
We compute x1 and r2 for this trimmed set as before. We stop the algorithm and output
a∗ := 1 and Λ(y) := Λ1 and x̄ := x1 as our decoding.

The general step of the algorithm is the following. At the start of the j-th step of the
algorithm, we have rj := y[j]−Φjx

j−1. We consider the set of all coordinates ν such that

|〈rj, φjν〉| ≥ δk−1/2‖rj‖. (6.6)

If the union of this new set of coordinates together with Λ̄j−1 has cardinality ≤ 2k, we
take Λj as the set of all these coordinates and define Λ̄j := Λ̄j−1 ∪ Λj and

xj := argmin
z∈X(Λ̄j)

‖y[j] − Φjz‖ = ‖y[j] − PΛ̄jy[j]‖. (6.7)
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If the cardinality of Λ̄j−1∪Λj exceeds 2k, we apply trimming. Namely, we define Λj as the
subset of coordinates from (6.6) with largest inner products such that the resulting set
Λ̄j := Λ̄j−1 ∪ Λj has cardinality 2k. In the latter case we stop the algorithm and output
Λ(y) := Λ̄j, a

∗ := j, and x̄ := xj.
If the algorithm has not been stopped by a trimming step then we stop it when j = a

and output a∗ = a, Λ(y) = Λ̄a and x̄ = xa as our decoding of y. Here, trimming is applied
on this last set if necessary to keep Λ(y) to have cardinality ≤ 2k.

We summarize the scheme as follows:

ThreshII:

(1) Set Λ̄0 = Λ0 := ∅, x0 := 0, j = 1, r1 = y[1];

(2) Define Λj consist of those ν such that the inner product 〈rj, φν〉 satisfy (6.6).

(3) If #(Λ̄j−1 ∪ Λj) < 2k, set Λ̄j := Λ̄j−1 ∪ Λj, compute xj according to (6.7), set
rj+1 = y[j+1] − Φj+1x

j and j + 1→ j and go to (2).

(4) If #(Λ̄j−1 ∪Λj) ≥ 2k or if j = a, define Λ̄j by trimming this set, and output a∗ = j
x̄ := xj computed according to (6.7).

Note that each of the quantities appearing above is stochastic and depends on the
draw ω ∈ Ω, i.e. we have Φj = Φj(ω), xj = xj(ω), but to avoid cluttering of notation we
often suppress this dependence in notation when it is clear from the context.

7 Analysis of algorithm ThreshII

The main result about ThreshII reads as follows.

Theorem 7.1 Given any 0 < δ ≤ 1
8
√

3
. The thresholding decoder applied with this choice

of δ to n × N random matrices, n = am, satisfying P1 and P2, satisfies the following.
For any x ∈ IRN and any 1 ≤ k ≤ N , there exists a set Ω4 = Ω4(x, k) satisfying

ρ(Ωc
4) ≤ a

(
b0e
−c0m/16+3k log( 24N

3k
) + b1e

−c1m/4 + (2b1 + b2)Ne−cmδ
2/k + b1e

−c1mδ2
)
, (7.1)

such that for any ω in Ω4 and any noise vector e, the decoded vector x̄ of the above greedy
decoder satisfies

‖x− x̄‖`2 ≤ 2−a/2‖x‖+ C∗
(
σk(x) + max

j=1,···,a∗
‖e[j]‖

)
, (7.2)

where C∗ := max{
√

408, [1 + 3
√

3 + 4
√

3
δ

]}.

We have the following corollary to this theorem.
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Corollary 7.2 Suppose that r, s > 0 are given and that the random process generates
m×N matrices Φ0(ω) which satisfy P1 and P2. We use n×N matrices Φ(ω), ω ∈ Ω,
with n = am and a := d2r logNe, for encoding and use the thresholding algorithm with
δ ∈ (0, 1

8
√

3
] for decoding. Then, for a sufficiently small constant c(δ) > 0 we have the

following. For each x ∈ IRN , there is a set Ω4 ⊂ Ω with

ρ(Ωc
4) ≤ N−s (7.3)

such that for any draw ω ∈ Ω4 and and any noise vector e, one has for each k ≤
c(δ, r)n/(logN)2

‖x− x̄‖ ≤ N−r + C(σk(x) + max
j=1,···,a∗

‖e[j]‖), (7.4)

with C = C(δ) depending only on δ.

Proof: We apply Theorem 7.1 with the values of a and δ as specified in the statement
of the Corollary. We can take Ω4 as the set in that theorem. Then ρ(Ωc

4) is bounded by
(7.1). The second and fourth terms on the right hand side of (7.1) are both less or equal
to C ′ae−c

′m and so is the first term if c(δ, r) is small enough, for the range of k described

in the theorem. The remaining third term is bounded by aN(2b1 + b2)e−
c logN
c(δ,r) . Thus each

of these terms can be bounded by N−s/4 provided c(δ, r) is small enough and we therefore
obtain (7.3). The estimate (7.4) follows from (7.2) because 2−a/2 ≤ N−r. 2

The remainder of this section is devoted to the proof of Theorem 7.1 and a short
discussion of its ramifications. The proof is somewhat simpler when the noise e in the
observation is zero and the reader may wish to make that assumption on first reading.
Throughout the remainder of this section, for a given but fixed x ∈ IRN and a given k,
we let Sk denote a set of its largest k coordinates.

In accordance with the above initialization we shall define x0 := 0 for the purposes
of the analysis that follows below. We begin with the following lemma which bounds
‖x− xj‖ by a multiple of ‖y[j] − Φjx

j‖. Note that xj is stochastically dependent on Φj.

Lemma 7.3 Given x ∈ IRN and k ≥ 1, define

Ω3 := Ω3(x, k) := ∩aj=1[Ω0(3k, 1/2,Φj) ∩ Ω1(xSck , 1/2,Φj)] (7.5)

where the sets Ω0 correspond to RIP and the sets Ω1 correspond to P1. Then,

ρ(Ωc
3) ≤ b0ae

−c0m/16+3k log( 24N
3k

) + b1ae
−c1m/4, (7.6)

and for each ω ∈ Ω3 and 1 ≤ j ≤ a∗, we have (for xj = xj(ω))

‖x− xj‖ ≤ (1 +
√

3)σk(x) +
√

2(‖y[j] − Φjx
j‖+ ‖e[j]‖). (7.7)

Proof: We first check the measure of Ωc
3. According to Properties P1 and RIP (see

(2.4)) we have

ρ(Ωc
3) ≤

a∑
j=1

ρ(Ω0(3k, 1/2,Φj)
c) +

a∑
j=1

ρ(Ω1(xSck , 1/2,Ωj)
c)
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≤ b0ae
−c0m/16+3k log( 24N

3k
) + b1ae

−c1m/4. (7.8)

This proves (7.6)
To verify (7.7), we have

‖x− xj‖ ≤ ‖x− xSk‖+ ‖xSk − xj‖ = σk(x) + ‖xSk − xj‖. (7.9)

We know that xSk − xj is 3k-sparse if j ≤ a∗. Hence, for ω ∈ Ω3, we have from
RIP(3k, 1/2),

‖xSk − xj‖ ≤
√

2‖ΦjxSk − Φjx
j‖, 1 ≤ j < a∗. (7.10)

This gives for 1 ≤ j ≤ a∗,

‖xSk−xj‖ ≤
√

2{‖ΦjxSk−Φjx‖+‖Φj(x−xj)‖} =
√

2{‖ΦjxSck‖+‖Φj(x−xj)‖}. (7.11)

Since, by P1, ‖ΦjxSck‖ ≤
√

3/2‖xSck‖ =
√

3/2σk(x) and since

y[j] − Φjx
j = Φj(x− xj) + e[j],

we have proved (7.7). 2

Our next two lemmas are going to show the quantitative effects of thresholding and
will later be used to provide error bounds for our algorithm.

Lemma 7.4 Let δ ∈ (0, 1), u ∈ IRN , and let Λ := Λ(u, δ, k) be the set of all indices ν
such that |uν | ≥ δk−1/2‖u‖. Then,

‖u− uΛ‖2 =
∑
ν /∈Λ

|uν |2 ≤ 3δ2‖u‖2 + σ2
3k(u). (7.12)

Proof: Let Λ0 be a set of the 3k largest coordinates of u so that
∑

ν /∈Λ0
|uν |2 = σ2

3k(u).
We have∑
ν /∈Λ

|uj|2 ≤
∑

ν∈Λ0∩Λc

|uν |2 +
∑

ν∈Λc0∩Λc

|uν |2 ≤ 3kδ2‖u‖2/k+σ2
3k(u) = 3δ2‖u‖2 +σ2

3k(u) (7.13)

where we used the fact that Λ0 has cardinality 3k. 2

Lemma 7.5 Let u ∈ IRN and let v := Φ0(u) + e[0], e[0] ∈ IRn, where Φ0 = Φ0(ω) is an
m × N matrix randomly drawn from our stochastic process which satisfies P1 and P2.
Moreover, assume that

‖e[0]‖ ≤ ‖u‖/4. (7.14)

Let Λ′(v, δ, k, ω) be the set of all ν such that

|〈v, φν〉| ≥ δ‖v‖k−1/2. (7.15)

Then, there is a set Ω(u, δ, k,Φ0) such that

ρ(Ωc(u, δ, k,Φ0)) ≤ (2b1 + b2 + 1)Ne−
cmδ2

k (7.16)
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where c := min(c1, c2)/64 and b1, b2, c1, c2 are the constants in P1 and P2, and for any
ω ∈ Ω(u, δ, k,Φ0) with δ ≤ 1/12, we have

Λ(u, 2δ, k) ⊂ Λ′(v, δ, k, ω) (7.17)

and
Λ′(v, δ, k, ω) ⊂ Λ(u, δ/2, k), (7.18)

where the set Λ(u, δ, k) is defined in Lemma 7.4.

Proof: For each ν ∈ Λ(u, δ, k), let u(ν) := u− uνδν and

v(ν) := Φ0(u(ν)) + e[0] = v − uνφν ,

where δν ∈ IRN is the νth coordinate vector. It follows that ‖u(ν)‖ ≤ ‖u‖ for each ν and
v = uνφν + v(ν). According to Property P1, for each ν, there is a set Ω1(u(ν), δ,Φ0) such
that

ρ(Ω1(u(ν), δ,Φ0)c) ≤ b1e
−c1mδ2 (7.19)

and for all ω ∈ Ω1(u(ν), δ,Φ0),

‖v(ν)‖ ≤
√

1 + δ‖u(ν)‖+ ‖e[0]‖ ≤ (
√

1 + δ + 1/4)‖u‖, ω ∈ Ω1(u(ν), δ,Φ0), (7.20)

where we have used the assumption that ‖e[0]‖ ≤ ‖u‖/4. Observe that v(ν) is stochasti-

cally independent of φν . Therefore, according to Property P2, there is a set Ω2(v(ν), δ/(8
√
k), ν,Φ0)

with

ρ(Ω2(v(ν), δ/(8
√
k), ν; Φ0)c) ≤ b2e

− c2mδ
2

64k (7.21)

and, such that for all ω ∈ Ω2(v(ν), δ/(8
√
k), ν,Φ0), we have

|〈v(ν), φν〉| ≤
δ‖v(ν)‖

8
√
k
≤ δ(

√
1 + δ + 1/4)‖u(ν)‖

8
√
k

≤ δ
√

1 + δ‖u‖
6
√
k

, ω ∈ Ω2(u(ν), δ, ν; Φ0), (7.22)

where we have used (7.20) and the fact that ‖u(ν)‖ ≤ ‖u‖.
We now define

Ω(u, δ, k,Φ0) :=⋂
ν∈Λ(u,δ,k)

(
Ω1(u(ν), δ,Φ0) ∩ Ω1(δν , δ,Φ0) ∩ Ω2(v(ν), δ/(8

√
k), ν,Φ0)

)
∩ Ω1(u, δ,Φ0),

Then, this set satisfies (7.16) because of (7.19), (7.21) and property P1 applied to δν and
u.

We now prove (7.17). For any ω ∈ Ω(u, δ, k,Φ0) and any ν ∈ Λ(u, 2δ, k), by (7.22),

|〈v, φν〉| ≥ |uν |(1− δ)− |〈v(ν), φν〉|
≥ 2k−1/2δ(1− δ)‖u‖ − k−1/2(δ/6)

√
1 + δ‖u‖. (7.23)
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Invoking P1 with respect to u, we conclude that

|〈v, φν〉| ≥
δ√
k

(
2(1− δ)−

√
1 + δ

6

) ‖Φ0u‖√
1 + δ

≥ δ√
k

(
2(1− δ)−

√
1 + δ

6

) 1√
1 + δ

(‖v‖ − ‖e[0]‖). (7.24)

Now observe, again by P1, that (7.14) implies

‖e[0]‖ ≤
1

4
√

1 + δ
‖Φ0u‖ ≤

1

4
√

1 + δ
(‖v‖+ ‖e[0]‖),

whence one infers

‖e[0]‖ ≤
1

4(
√

1 + δ − 1/4)
‖v‖ ≤ 1

3
‖v‖. (7.25)

Thus, combining (7.24) and (7.25), gives

|〈v, φν〉| ≥
{

2

3
√

1 + δ

(
2(1− δ)−

√
1 + δ

6

)} δ√
k
‖v‖. (7.26)

One can verify that for δ ≤ 1/10 the factor in curly brackets is indeed larger than 1 which
shows (7.17).

We now prove (7.18). For any ω ∈ Ω(u, δ, k,Φ0) and any ν /∈ Λ(u, δ/2, k), we use
again (7.22) and P1 for u to conclude that

|〈v, φν〉| ≤ |uν |(1 + δ) + |〈v(ν), φν〉|
≤ (1 + δ)(δ/2)k−1/2‖u‖+ k−1/2(δ/6)

√
1 + δ‖u‖

≤ δ√
k

(1 + δ

2
+

√
1 + δ

6

) 1√
1− δ

‖Φ0u‖

≤ δ√
k

(1 + δ

2
+

√
1 + δ

6

) 1√
1− δ

(‖v‖+ ‖e[0]‖)

≤ δ√
k

(1 + δ

2
+

√
1 + δ

6

) 4

3
√

1− δ
‖v‖, (7.27)

where we have used (7.25) in the last step. One can verify that for δ ≤ 1/12 one has(
1+δ

2
+
√

1+δ
6

)
4

3
√

1−δ < 1 so that |〈v, φν〉| < δk−1/2‖u‖. This shows that any such ν could

not have been chosen for Λ′(v, δ, k, ω). This completes the proof of the lemma. 2

We can now define the set Ω4 that appears in the statement of Theorem 7.1 and
Corollary 7.2 as

Ω4 := Ω4(x, k, δ) := Ω3(x, k) ∩ ∩a∗j=1[Ω(x− xj−1, δ, k,Φj) ∩ Ω1(xSck , δ,Φj)], (7.28)

where Ω3 is the set in Lemma 7.3, the next sets in brackets come from Lemma 7.5 and
the last sets come from P1. Let us note that

ρ(Ω4(x, k, δ)c) ≤ a {(b0e
−c0m/16+3k log( 24N

3k
) + b1e

−c1m/4
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+(2b1 + b2 + 1)Ne−cmδ
2/k + b1e

−c1mδ2}, (7.29)

Indeed, this estimate follows from (7.6), (7.16) and P1 and the fact that a∗ ≤ a. The set
Ω4 will be used in the remainder of this section.

The next lemma shows a certain reduction of the error at each iteration of the algo-
rithm.

Lemma 7.6 For each 1/12 ≥ δ > 0, each x ∈ IRN , each ω ∈ Ω4(x, k, δ) and each
1 ≤ j < a∗, we have

‖x− xj‖2 ≤ A‖x− xj−1‖2 +Bσ2
k(x) + C‖e[j]‖2, (7.30)

where A := 96δ2, B := 204, and C = 196. This same estimate holds for j = a∗ provided
this last set was not trimmed.

Proof: We fix a value of j and assume that ω ∈ Ω4(x, k, δ). At the beginning of the j-th
step of the decoding we have in hand Λ̄j−1 and xj−1 where, according to our initialization
of the algorithm, x0 := 0 and Λ̄0 := ∅. Thresholding on the vector Φ∗jr

j = Φ∗j(Φj(x −
xj−1) + e[j]), now gives the set Λj and the new composite set Λ̄j. By our assumption on
j, there was no trimming involved.

We shall distinguish between two cases: (a) ‖e[j]‖ ≤ ‖x − xj−1‖/4 and (b) ‖e[j]‖ >
‖x− xj−1‖/4.

In case (a), since Φj is drawn independently of x − xj−1, we can apply Lemma 7.5
for u := x − xj−1 and e[0] := e[j]. It says that for ω ∈ Ω(x − xj−1, δ, k,Φj), the set Λj

contains all coordinates ν for which |xν−xj−1
ν | ≥ 2δk−1/2‖x−xj−1‖. Hence, we can apply

Lemma 7.4 to u = x − xj−1 and obtain for w := xj−1 + (x − xj−1)Λj , upon noting that
(x− xj−1)Λcj

= x− w,

‖x− w‖2 ≤ 12δ2‖x− xj−1‖2 + σ2
3k(x− xj−1) ≤ 12δ2‖x− xj−1‖2 + σ2

k(x), (7.31)

where the last inequality uses the fact that σ3k(x− xj−1) ≤ σk(x) because xj−1 is in Σ2k.
Starting with Lemma 7.3, we can now estimate

‖x− xj‖ ≤ (1 +
√

3)σk(x) +
√

2(‖y[j] − Φjx
j‖+ ‖e[j]‖)

≤ (1 +
√

3)σk(x) +
√

2(‖y[j] − Φjw‖+ ‖e[j]‖)
≤ (1 +

√
3)σk(x) +

√
2(‖Φj(x− w)‖+ 2‖e[j]‖) (7.32)

where the second to last inequality uses the minimality of the least squares solution in
the space X(Λ̄j) of vectors in IRN supported in Λ̄j.

We now want to estimate the middle term in (7.32). We cannot use P1 directly
because w depends on Φj. Instead, we write x− w = x− xSk + (xSk − w) and find

‖Φj(x− w)‖ ≤ ‖Φj(x− xSk)‖+ ‖Φj(xSk − w)‖
≤
√

1 + δ
(
‖xSck‖+ ‖xSk − w‖

)
≤
√

1 + δ (σk(x) + ‖x− xSk‖+ ‖x− w‖)
≤
√

1 + δ (2σk(x) + ‖x− w‖) . (7.33)
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Here in the second inequality we used P1 for xSck and RIP(3k, δ) for Φj.
We now subsitute (7.33) into (7.32) to obtain

‖x− xj‖ ≤ (1 +
√

3 + 2
√

2
√

1 + δ)σk(x) +
√

2
√

1 + δ‖x− w‖+ 2
√

2‖e[j]‖
≤ 7σk(x) + 2‖x− w‖+ 2

√
2‖e[j]‖, (7.34)

because 0 < δ < 1. We square this last inequality and then use (7.31) to arrive at

‖x− xj‖2 ≤ 2(7σ2
k(x) + 2

√
2‖e[j]‖)2 + 8‖x− w‖2

≤ 204σ2
k(x) + 96δ2‖x− xj−1‖2 + 32‖e[j]‖2

≤ A‖x− xj−1‖2 +Bσ2
k(x) + C‖e[j]‖2, (7.35)

as desired.
Now we turn to case (b) ‖e[j]‖ > ‖x − xj−1‖/4, and use again that Φj is drawn

independently of x− xj−1, so that P1 yields

‖e[j]‖ ≥ 1
4
√

1+δ
‖Φj(x− xj−1)‖

= 1
4
√

1+δ
‖y[j] − Φjx

j−1 − e[j]‖
≥ 1

4
√

1+δ
(‖y[j] − Φjx

j−1‖ − ‖e[j]‖).

Since xj minimizes ‖y[j] − Φjz‖ over X(Λ̄j), and Λ̄j contains the support of xj−1, we
conclude that

(4
√

1 + δ + 1)‖e[j]‖ ≥ ‖y[j] − Φjx
j−1‖ ≥ ‖y[j] − Φjx

j‖. (7.36)

Note that (4
√

1 + δ + 1) ≤ 6 for δ ≤ 1/10. We invoke now Lemma 7.3 to conclude that

‖x− xj‖ ≤ (1 +
√

3)σk(x) + 7
√

2‖e[j]‖.

Squaring both sides confirms (7.30) and finishes the proof. 2

Proof Theorem 7.1: We can now prove our main result about the greedy algorithm of
this section. Let δ ≤ 1/8

√
3. Then A = 96δ2 ≤ 1/2 and δ ≤ 1/12.

We will continue to denote by Sk a set of k coordinates corresponding to the largest
entries (in absolute value) of x. We shall consider two cases.

Case 1: In this first case, we assume that the algorithm never employed trimming. In
particular this means that a∗ = a and x̄ = xa. We introduce the abbreviated notation
Ej := ‖x − xj‖2, ηj := ‖e[j]‖2, and σ := σ2

k(x). Then, an application of Lemma 7.6 at
each iteration gives

Ej ≤ AEj−1 +Bσ + Cηj j = 2, . . . , a∗. (7.37)

Iteratively applying this inequality gives

‖x− x̄‖2 = ‖x− xa‖2 ≤ Aa‖x‖2 +
B

1− A
σ2
k(x) + C

a−1∑
i=0

Aiηj−i

≤ 2−a‖x‖2 + 2Bσ2
k(x) + C[

a−1∑
i=0

Ai] max
j=1,···,a∗

ηj (7.38)
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Since A ≤ 1/2, this proves (7.2) in this case.

Case 2: The remaining case we have to consider is when trimming was used to create
the last set Λ̄a∗ . In this case the following observation is useful.

Remark 7.7 For any ν ∈ Λ̄a∗ one has for any ω ∈ Ω4

δ

2
√
k

max
j=1,···,a∗

‖e[j]‖+ |xν | ≥
δ

2
√

2k
‖x− xΛ̄a∗

‖. (7.39)

To prove (7.39), for any ν ∈ Λ̄a∗ consider the first iteration j when ν ∈ Λj. The inner
product of rj with φjν was by definition larger than δk−1/2‖rj‖. It follows from (7.18) that
for ω ∈ Ω4(x, k, δ)

|xν | ≥
‖rj‖δ
2
√
k
. (7.40)

Since xj−1 is supported on Λ̄j−1, one obtains

‖x− xΛ̄j−1
‖ ≤ ‖x− xj−1‖ ≤ (1− δ)−1/2‖Φj(x− xj−1)‖ ≤

√
2(‖rj‖+ ‖e[j]‖) (7.41)

where the last inequality uses that ω ∈ Ω4 allows us to apply P1 for x− xj−1 as well as
the fact that δ ≤ 1/2. This confirms (7.39). 2

Since trimming was used we have #(Λ̄a∗) = 2k. It follows that Λ̄a∗ contains at least k
coordinates from Sck. Since (7.39) holds for each ν ∈ Λ̄a∗ ∩ Sck, it follows that∑

ν∈Λ̄a∗∩Sck

(
|xν |+

δ

2
√
k

max
j=1,···,a∗

‖e[j]‖
)2

≥ δ2

8
‖x− xΛ̄a∗

‖2.

On the other hand, we have∑
ν∈Λ̄a∗∩Sck

(
|xν |+ δ

2
√
k

maxj=1,···,a∗ ‖e[j]‖
)2

≤ 2
∑

ν∈Λ̄a∗∩Sck
|xν |2

+2
δ2#(Λ̄a∗∩Sck)

4k
maxj=1,···,a∗ ‖e[j]‖2

≤ 2σk(x)2 + δ2 maxj=1,···,a∗ ‖e[j]‖2.

Thus we conclude that

‖x− xΛ̄a∗
‖ ≤ 4

δ
σk(x) + 2

√
2 max
j=1,···,a∗

‖e[j]‖, (7.42)

where we have used the fact that #(Λ̄a∗ ∩ Sck) ≥ k.
We now turn to estimating ‖x− x̄‖. We begin with

‖x− x̄‖ = ‖x− xa∗‖ ≤ ‖x− xSk‖+ ‖xSk − xa
∗‖ ≤ σk(x) + ‖xSk − xa

∗‖ (7.43)

The second term was estimated in (7.11) in the proof of Lemma 7.3 (with j = a∗).
Using that estimate and the minimality of the least squares solution, we obtain

‖x− x̄‖ ≤ (1 +
√

3)σk(x) +
√

2‖Φa∗(x− xa
∗
)‖
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≤ (1 +
√

3)σk(x) +
√

2(‖y[a∗] − Φa∗x
a∗‖+ ‖e[a∗]‖)

≤ (1 +
√

3)σk(x) +
√

2(‖y[a∗] − Φa∗xΛ̄a∗
‖+ max

j=1,···,a∗
‖e[j]‖)

≤ (1 +
√

3)σk(x) +
√

2(‖Φa∗(x− xSk)‖+ ‖Φa∗(xSk − xΛ̄a∗
)‖+ 2 max

j=1,···,a∗
‖e[j]‖.).

Now ω ∈ Ω4 ⊂ Ω3. Looking at the definition of Ω3 in (7.5), we see that we can apply P1
and RIP to conclude that

‖x− x̄‖ ≤ (1 +
√

3)σk(x) +
√

3(‖xSck‖+ ‖xSk − xΛ̄a∗
‖) + 2

√
2 max
j=1,···,a∗

‖e[j]‖

≤ (1 + 2
√

3)σk(x) +
√

3(‖x− xSk‖+ ‖x− xΛ̄a∗
‖) + 2

√
2 max
j=1,···,a∗

‖e[j]‖.

≤ (1 + 3
√

3)σk(x) +
√

3‖x− xΛ̄a∗
‖+ 2

√
2 max
j=1,···,a∗

‖e[j]‖

≤ [1 + 3
√

3 +
4
√

3

δ
]σk(x) + 2(

√
2 +
√

6) max
j=1,···,a∗

‖e[j]‖, (7.44)

where the last inequality uses (7.42). This shows that (7.2) holds in the second case as
well and completes the proof of the theorem. 2

We conclude this section with some remarks. The above argument shows that as soon
as trimming is necessary, i.e. the sets Λ̄j build up fast enough, the decoder is actually
instance-optimal in the original sense when e = 0, see (7.44).

Remark 7.8 Even when trimming does not occur in the algorithm, we still have the
following estimate: suppose that e = 0 and 2q := #Λ̄a ≤ 2k, then one has

‖x− x̄‖ ≤ (5 +
√

3)σk(x) + δ−1

√
32k

q
σq(x). (7.45)

Thus, as long as the size of Λ̄a∗, i.e. the support of the decoder output is comparable to k,
one can bound the error by a constant multiple of the corresponding q-term approximation
error.

Proof: Remark 7.7 together with the argument leading to (7.42) yields

σk(x)2 ≥ δ2q

8k
‖x− xΛ̄a‖

2.

Inserting this in the argument leading to (7.44), confirms the claim. 2

An extreme case where the algorithm would not perform well is xi = N−1/2, i =

1, . . . , N , in which case σk(x) =
√

N−k
N

which stays close to one in the range of k under

consideration. Since the sets Λ′(rj, δ, k, ω) are for most ω contained in the sets Λ(x −
xj−1, δ/2, k), but ‖x − xj−1‖ ≥ σk(x), no entry would actually satisfy |xi| = N−1/2 ≥
δ

2
√
k
‖x− xj−1‖ so that the sets Λ̄j would not build up. On the other hand, in such a case

it would be irrelevant which entries to pick.
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8 Appendix: random matrices satisfying P1 and P2

In this section, we prove the validity of P1 and P2 for three standard examples of random
matrices:

(i) Gaussian: the entries Φi,j are i.i.d. centered Gaussian variables of variance 1/n.

(ii) Bernoulli: the entries Φi,j are i.i.d. Bernoulli variables with values ±1/
√
n.

(iii) Unit vectors: the columns φi are i.i.d. under the uniform law on the n-dimensional
sphere.

We also show that P1 implies RIP.

8.1 Proof of P1

By linearity it is sufficient to consider a vector x of norm 1 and therefore evaluate
Prob{|‖Φx‖2 − 1| ≥ δ}.

The validity of P1 for Gaussian and Bernoulli matrices is a consequence of Lemma
6.1 of [12], which establishes this property for a more general class of random matrices
with i.i.d. entries that have a subgaussian distribution.

For matrices consisting of random unit vectors, we notice that the function

M(φ1, · · · , φn) = ‖
N∑
j=1

xjφj‖ = ‖Φx‖

is a Lip 1 function from (IRn)N to IR since

|M(φ1, · · · , φn)−M(φ′1, · · · , φ′n)| ≤ ‖
N∑
j=1

xj(φj − φ′j)‖ ≤ (
N∑
j=1

‖φj − φ′j‖2)1/2.

The uniform product measure on an N -fold tensor product of Sn−1 by itself has the same
concentration function of the form e−(n−1)δ2/2 as Sn−1 (see [18]) and therefore, using the
notation X = ‖Φx‖

Prob
(
|X − µ| ≥ δ

)
≤ 2e−(n−1)δ2/2,

where µ is the median of X. It is easy to derive from this a similar estimation where
the median µ is replaced by the average E(X): assume that X is a random variable that
satisfies

Prob(|X − µ| ≥ δ) ≤ ae−bδ
2

,

with a ≥ 1. Then, assuming without loss of generality that E(X) ≥ µ, we obtain

E(X)− µ ≤
+∞∫
0

ae−bδ
2

=
a

2

√
π

b
.
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It follows that Prob(|X − E(X)| ≥ δ) ≤ Prob(|X − µ| ≥ δ
2
) when a

2

√
π
b
≤ δ

2
. Since

Prob(|X − E(X)| ≥ δ) ≤ 1, we have for any δ ≥ 0,

Prob(|X − E(X)| ≥ δ) ≤ ãe−bδ
2/4, ã = eπa

2/4,

where we have used that a ≥ 1. In the present case X = ‖Φx‖, this gives

Prob
(
|X − E(X)| ≥ δ

)
≤ eπe−(n−1)δ2/4 ≤ 27e−(n−1)δ2/4 (8.1)

By integration, we obtain

E(|X − E(X)|2) ≤ 54

+∞∫
0

te−(n−1)t2/4dt =
108

n− 1
.

Since E(‖Φx‖2) = ‖x‖2 = 1, we thus have

0 ≤ 1− E(X)2 = E(X2)− E(X)2 = E(|X − E(X)|2) ≤ 108

n− 1
,

which implies

0 ≤ 1− E(X) ≤ 108

n− 1
. (8.2)

It follows from (8.1) and (8.2) that when δ ≥ 216
n−1

Prob
(
|X − 1| ≥ δ

)
≤ Prob

(
|X − E(X)| ≥ δ/2

)
≤ 27e−(n−1)δ2/16.

On the other hand, if δ ≤ 216
n−1

, we have

Prob
(
|X − 1| ≥ δ

)
≤ 1 ≤ e

2916
n−1 e−(n−1)δ2/16.

Therefore, in all cases we have

Prob
(
|X − 1| ≥ δ

)
≤ C0e

−(n−1)δ2/16,

with C0 = max{27, e
2916
n−1 }. We conclude by

Prob(| ‖Φx‖2 − 1| ≥ δ) = Prob(|X2 − 1| ≥ δ)
≤ Prob(|X − 1| ≥ δ/3) + Prob(|X + 1| ≥ 3)
≤ Prob(|X − 1| ≥ δ/3) + Prob(|X − 1| ≥ 1)

≤ 2C0e
−(n−1)δ2/144,

for all 0 ≤ δ ≤ 1, which shows that P1 holds.
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8.2 Proof of P2

Again, by linearity, it is sufficient to consider a vector z of norm 1 and evaluate Prob{|〈z, φl〉| ≥
δ}.

For Gaussian matrices, we note that 〈z, φl〉 =
∑n

i=1 ziΦi,l is a centered Gaussian vari-
able with variance 1/n. From this it follows that

Prob{|〈z, φl〉| ≥ δ} =
2√
2π

∫
t≥
√
nδ

e−t
2/2 dt ≤ 2√

2π
e−nδ

2/2

∫
t≥
√
nδ

e−(t−δ
√
n)2/2 dt = e−nδ

2/2.

(8.3)
Therefore P2 holds with b2 = 1 and c2 = 1/2.

For Bernoulli matrices, we invoke Hoeffding’s inequality [16], which states that for a
sequence of independent variables vi with mean zero and such that |vi| ≤ mi almost
surely, one has

Prob
{
|
∑

vi| ≥ δ
}
≤ 2e

− δ2

2
P
m2
i . (8.4)

It follows that

Prob{|〈z, φl〉| ≥ δ} ≤ 2e
− δ2

2
P
z2
i
/n = 2e−nδ

2/2. (8.5)

Therefore P2 holds with b2 = 2 and c2 = 1/2.

For matrices consisting of random unit vectors, Prob{|〈z, φl〉| ≥ δ} is the ratio between
the measure of the set Sε,n−1 := {x ∈ Sn−1, |〈z, x〉| ≥ δ} and the measure of the whole
sphere Sn−1. It is well known that this ratio tends exponentially to 0 as n→ +∞. More
precisely, using that the uniform measure on Sn−1 has a concentration function of the
form e−(n−1)δ2/2 (see [17]), one obtains that

Prob{|〈z, φl〉| ≥ δ} ≤ 2e−(n−1)δ2/2. (8.6)

Since, the inner product is clearly ≤ 1, we only need to consider δ ≤ 1, in which case we
find that P2 holds with b2 = 2 and c2 = 1/4 provided n ≥ 2.

8.3 P1 implies RIP

The restricted isometry property RIP, introduced by Candes, Tao and Romberg [8, 9]
states that Φ acts close to an isometry on all m sparse vector. In other words, for some
0 < η < 1,

(1− η)‖xT‖ ≤ ‖ΦxT‖ ≤ (1 + η)‖xT‖, x ∈ IRN , |T | ≤ k. (8.7)

Following the approach in [3], we shall prove that P1 implies that (2.3) holds with prob-

ability larger than 1− b1e
−n c1η

2

4
+m[log(ηN/m)+log(12/η)].

We first fix T such that |T | ≤ N and consider the set XT of N -dimensional vectors
with support contained in T . We shall prove that P1 implies the validity of

(1− η)‖x‖ ≤ ‖Φx‖ ≤ (1 + η)‖x‖, x ∈ XT , (8.8)
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with probability larger than 1 − b1(12/η)me−c1nη
2/4. Since the number of sets T of car-

dinality m is (Nm) ≤ (eN/m)m, it will follow from the union bound that (2.3) holds with
probability larger than 1− b1(eN/m)m(12/η)me−c1nη

2/4, which is the announced result.
We choose a finite set Q ⊂ XT such that ‖q‖ = 1 for all q ∈ Q and such that for all

x ∈ XT with ‖x‖ = 1, there exists q ∈ Q with ‖x − q‖ ≤ η/4. It is well known from
covering numbers that one can choose such a set Q with |Q| ≤ (12/η)m (see e.g. Chapter
13 of [19]).

Invoking P1 and a union bound, we thus obtain that with probability larger than
1− b1(12/η)me−c1nη

2/4, we have for all q ∈ Q.

(1− η/2)‖q‖2 ≤ ‖Φq‖2 ≤ (1 + η/2)‖q‖2, (8.9)

which trivially gives
(1− η/2)‖q‖ ≤ ‖Φq‖ ≤ (1 + η/2)‖q‖, (8.10)

Denoting by M the norm of Φ restricted to XT , we derive from the upper inequality and
the covering property of Q,

M = supx∈XT ,‖x‖≤1 ‖Φx‖
≤ supx∈XT ,‖x‖≤1 infq∈Q(‖Φq‖+ ‖Φ(x− q)‖)
≤ 1 + η/2 +M supx∈XT ,‖x‖≤1 ‖x− q‖
≤ 1 + η/2 +Mη/4.

It follows that M ≤ (1 + η/2)/(1− η/4) ≤ 1 + η which gives the upper inequality in (8.8).
The lower inequality follows from it since for all x ∈ XT with ‖x‖ = 1 and q ∈ Q such
that ‖x− q‖ ≤ η/4, we have

‖Φx‖ ≥ ‖Φq‖ − ‖Φ(x− q)‖ ≥ 1− η/2− (1 + η)η/4 ≥ 1− η. (8.11)

By linearity, the lower inequality is thus proved for any x ∈ XT .

Acknowledgments: The authors wish to thank Sinan Gunturk and the Courant Insti-
tute of Mathematical Sciences who hosted us when much of this research was completed.
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